OSA and Hypertension: What You Should Know

1. Intermittent hypoxia in OSA triggers hemodynamic changes that raise blood pressure through increased fluid retention and vasoconstriction.^{1,2}

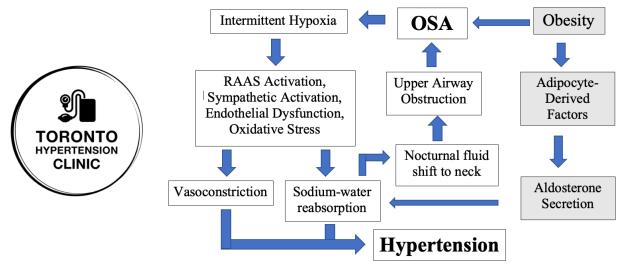


Fig. 1 Hemodynamic effects of OSA that result in hypertension.

2. Patients with OSA are more likely to be hypertensive, even after controlling for obesity and age. In addition, 71-85% of patients with treatment-resistant hypertension have OSA^{3,4}.

There is a dose-related relationship between OSA severity and blood pressure increase. In one study, those with an Apnea-Hypopnea Index (AHI) of 5-15 had twice the risk of hypertension compared to those with an AHI of 0.5 On 24hr ABPM, OSA patients are typically "non-dippers" (nocturnal BP decline <10%) or "reverse-dippers" (nocturnal BP higher than daytime BP), often with a diastolic predominance.

3. Aldosterone excess is common in hypertensive OSA patients, and most patients with primary aldosteronism (PA) have OSA.

In addition to hypoxia-driven RAAS activation, it has recently been proposed that aldosterone excess in OSA may result from adjocyte-derived factors that directly induce aldosterone secretion (Fig 1).⁶ Patients with PA have a high rate of OSA: in a recent cross-sectional study, 67.6% of patients with PA had OSA.⁷

4. Treatment of OSA with CPAP has a modest but significant effect on BP reduction.

In a 2014 meta-analysis, composed of 30 RCT's and >1900 patients, CPAP therapy reduced systolic BP by a mean of 2.6mmHg, considered significant for reducing cardiovascular events.⁸ Ideal therapy of OSA in hypertensive patients is multi-modal, with CPAP therapy, weight loss, and antihypertensive medication. Consider using an aldosterone antagonist earlier on in hypertension treatment to counteract excess circulating aldosterone.

Liam Finlay, MBChB, FRCPC, CHS Director, Toronto Hypertension Clinic

Fax: (647) 313 3001. Phone: (647) 313 6116. www.torontohypertensionclinic.ca

2 Sugawara A, Shimada H, Otsubo Y, et. al. Primary aldosteronism and obstructive sleep apnea: the strong ties between them. Hypertension Research. 2023 Jul;46(7):1712-3. 3.

Shimada H, Noro E, Suzuki S, Sakamoto J, Sato I, et. al. Effects of adipocyte-derived factors on the adrenal cortex. Current Molecular Pharmacology. 2020 Jan 1;13(1):2-6. 6

Cai A, Wang L, Zhou Y. Hypertension and obstructive sleep apnea. Hypertension Research. 2016 Jun;39(6):391-5.

Pratt-Ubunama MN, Nishizaka MK, Boedefeld RL, Cofield SS, Harding SM, Calhoun DA. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest. 2007 Feb 1;131(2):453-9. 4 Gonçalves SC, Martinez D, Gus M, de Abreu-Silva EO, Bertoluci C, Dutra I, Branchi T, Moreira LB, Fuchs SC, de Oliveira AC, Fuchs FD. Obstructive sleep apnea and resistant hypertension: a case-control study. Chest. 2007 Dec 1;132(6):1858-62.

Peppard PE, Young T, Palta M, Skatud J. Prospective study of the association between sleep-disordered breathing and hypertension. New England Journal of Medicine. 2000 May 11;342(19):1378-84.

Buffolo F, Li Q, Monticone S, Heinrich DA, Mattei A, Pieroni J, Mei M, Yang S, Hu YH, Yang MC, Sabbadin C. Primary aldosteronism and obstructive sleep apnea: a cross-sectional multi-ethnic study. 7. Hypertension. 2019 Dec;74(6):1532-40.

Fava C, Dorigoni S, Dalle Vedove F, Danese E, Montagnana M, Guidi GC, Narkiewicz K, Minuz P. Effect of CPAP on blood pressure in patients with OSA/hypopnea: a systematic review and meta-8 analysis. Chest. 2014 Apr 1;145(4):762-71.